СОХРАНЕНИЯ ПРИНЦИПЫ

утверждения, выражающие идею сохранения вещей, свойств или отношений природы и выступающие в качестве принципов науч. теорий. К числу С. п. относятся, напр. известные в физике законы сохранения – энергии, массы, импульса, момента импульса, электрич. заряда, барионного заряда, лептонного заряда, странности, четности и т.п. Закон сохранения энергии в качестве общего закона природы был открыт в сер. 19 в. Получив применение в различных областях классич. физики, он и в наст. время остается важнейшим принципом физич. науки. Новая форма действия этого закона сохранения основана, в частности, на учете взаимосвязи энергии и массы (Е=mс2): закон сохранения массы применяется в совр. физике совместно с законом сохранения энергии и действие его часто выявляется через сохранение энергии. Движение имеет и др. сохраняющиеся параметры. Напр., импульс р, равный произведению массы частицы на ее скорость, характеризует определ. образом направленность движения частицы и связан только с движущейся частицей. Если к.-л. частица в момент своего превращения покоится, то в результате такого превращения не может образоваться только одна движущаяся частица. Такой процесс не противоречил бы закону сохранения энергии, но запрещается законом сохранения импульса. В результате превращения в этом случае возникают по крайней мере две частицы. С т. зр. теории относительности, импульс движущейся частицы следует рассматривать и в связи с энергией, и в связи с ее собств. массой. В этом случае импульс р, энергия ? и масса покоя т0 будут связаны соотношением Е2–р2с2=m02с4, где с – скорость света. Вращат. движение характеризуется сохранением момента импульса. Вращение может быть орбитальным и собственным. Орбитальный момент импульса частицы в единицах постоянной Планка (h) принимает значения, кратные h. Собств. момент импульса частицы, или спин, кратен 1/2 h. К числу свойств частиц, связанных с их внутр. структурой, относится электрич. заряд е. С т. зр. совр. физики, в процессах взаимных превращений частиц сохраняется алгебраич. сумма зарядов. Можно сказать, что закон сохранения заряда соответствует структурным изменениям материи, а сам электрич. заряд является важнейшим инвариантом структурных изменений. Сохраняющийся электрич. заряд можно рассматривать и как константу электромагнитного взаимодействия. Ядерное взаимодействие существенно отличается от электромагнитного и характеризуется соответствующими сохраня- ющимися величинами. Такой величиной является, в частности, изотопич. спин, к-рый в качестве специфич. свойства частицы связан с электрич. зарядом. Частицы могут объединяться в зарядовые семейства. Если зарядовое семейство состоит из двух частиц, напр. из протона и нейтрона, то изотопич. спин равен половине и эта величина характеризует все семейство. Можно, однако, ввести различное значение изотопич. спина для каждого члена семейства, в данном случае для протона и нейтрона. Если превращения частиц вызываются зарядово-независимыми взаимодействиями, то полный изотопич. спин I системы частиц сохраняется. Исследование процессов рождения и гибели гиперонов и К-мезонов привело к открытию нового сохраняющегося параметра – странности и соответствующего закона сохранения. Странность S по абс. значению выражается целым числом и подобно электрич. заряду может иметь положительный или отрицат. знак. М. Гелл-Ман и К. Нисидзима, к-рые выдвинули идею новой сохраняющейся величины и дали ей название, на основе открытого ими закона сохранения предсказали существование новых частиц. Сохраняющиеся параметры дают основание для объединения различных частиц в соответствующие классификационные группы или классы. Странные частицы могут быть объединены в один класс с нуклонами, т.к. всем членам этого класса можно приписать одно общее свойство – барионный заряд. Частицы, у к-рых барионный заряд равен +1, наз. барионами, а те, у к-рых барионный заряд равен –1, – антибарионами. Закон сохранения барионного заряда, или, иначе, барионного числа А, обеспечивает устойчивое существование протонов и, следовательно, ядер атомов и всей материи в целом. Полное значение величины А остается во всех превращениях постоянным. Можно говорить в силу этого о законе сохранения числа барионов. Барионы сохраняются, кроме случаев возможной аннигиляции барионов и антибарионов. Но и тогда барионный заряд, подобно электрич. заряду, не исчезает вообще, а сохраняется как скрытая возможность. Закон сохранения барионного заряда и закон сохранения странности тесно связаны друг с другом. Их связь принимает простую форму, если ввести понятие гиперзаряда Y, равного удвоенному значению среднего заряда семейства частиц. В этом случае странность S и барионный заряд А будут связаны следующим простым соотношением S=Y–А. Для класса легких частиц – лептонов, к числу к-рых относятся нейтрино, электроны, мю-мезоны и соответствующие им античастицы, объединяющим принципом является закон сохранения лептонного заряда. Этот закон, в свою очередь, разделяется на два независимых закона – закон сохранения электронного лептонного заряда и закон сохранения мюонного лептонного заряда. Кроме рассмотренных С. п., в физике элементарных частиц действуют и др. С. п., напр. закон сохранения четности или принцип унитарности в совр. квантовой теории поля. Существуют, однако, и др. рода С. п. С появлением теории относительности выявилось исключит. значение принципа сохранения законов науки, или, иначе, принципа инвариантности. Любой закон природы представляет собой выражение нек-рой регулярности, нек-рого постоянства. Принцип инвариантности в качестве физич. принципа выявляет спец. условия этого постоянства по отношению к определ. классу движений. В механике Ньютона условием необходимости и общности законов движения выступали абс. пространство и время. В относительности теории условие общности и необходимости законов движения связывается с понятием инерциальной системы, в к-рой по определению выполняются известные законы сохранения. Способ перехода от одной инерциальной системы к другой, движущейся относительно первой равномерно и прямолинейно, и выражает условие инвариантности законов природы. Такой переход, позволяющий вычислять пространственно-врем. координаты данной системы, если известны координаты др. системы, выражается посредством нек-рых математич. преобразований. Законы механики Ньютона инвариантны относительно преобразований Галилея. Законы релятивистской механики инвариантны относительно преобразований Лоренца. Многообразие С. п. приводит к необходимости их классификации. В основу классификации можно положить различия в характере сохраняющихся объектов и различия в математич. формах выражения С. п. П о степени общности действия С. п. можно разделить на 2 класса – общие и частные. К первым можно отнести, напр., законы сохранения энергии, массы, импульса, момента, электрич. заряда. К частным С. п. будут отнесены законы сохранения четности, изотопич. спина, странности. Общие С. п. образуют основу единства физич. знания, а частные С. п. составляют класс законов, свидетельствующих о специфичности отд. областей физич. знания. Открытие этого второго класса С. п. является важной чертой развития новейшей физики. Деление С. п. на общие и частные позволяет по-новому рассматривать проблему их абсолютности. Любой из С. п., принадлежащих классу общих законов, может обнаружить ограниченность сферы своего действия. Др. словами, могут быть открыты такие области природы, где нек-рые из общих С. п. окажутся неприменимыми. На первый взгляд, это ведет к уменьшению класса общих законов и тем самым к допущению принципиальной возможности превращения его в пустой класс. Но такой вывод был бы необоснованным. В новых необычных областях природы могут и должны быть открыты новые, более общие С. п. Произойдет изменение состава класса общих принципов, но такого рода класс в силу единства науч. знания сохранится во всякой будущей теории. Абсолютен не тот или иной конкретный С. п., а сама идея сохранения, к-рую можно выразить в качестве общетеоретич. принципа – ни одна развитая науч. теория не может быть построена без введения тех или иных сохраняющихся величин. Для каждого данного э т а п а р а з в и т и я ф и з и к и можно последовательно провести деление С. п. на три класса – сохранение вещей, свойств и отношений. К классу С. п. вещей можно отнести, напр., закон сохранения массы в его классич. форме, когда масса рассматривается как число частиц в теле (в совр. физике под массой понимается не число частиц, а мера инертных и гравитационных свойств). Законы сохранения вещей и законы сохранения свойств взаимопереходят друг в друга. В физике элементарных частиц это проявляется особенно наглядно: законы сохранения лептонного и барионного зарядов можно сформулировать как законы сохранения разности соответствующих частиц и античастиц, или, кратко говоря, как законы сохранения барионов и, соответственно, лептонов. В структуре совр. физич. теории законы сохранения свойств оказываются более существенными, а еще более существенно сохранение связей или отношений вещей. Логич. переход от сохранения вещей к сохранению свойств, а затем к сохранению отношений (инвариантности) соответствует в совр. теории переходу от менее общих к более общим и, следовательно, более фундаментальным С. п. В связи с этой особенностью совр. физич. теорий возникает вопрос о смысле и значении закона сохранения материи и движения. Этот закон в истории познания природы принимал различные формы. В формулировке Ломоносова (1748) сохраняющимся объектом выступает сама материя или вещество, а также движение. Лавуазье (1789) формулирует закон сохранения материи как принцип, согласно к-рому в каждом процессе в начальный и конечный момент находится неизменное количество материи. Если материя рассматривается как система неизменных атомов, то ее сохранение предстает как их неуничтожимость, а всевозможные превращения веществ сводятся к структурным видоизменениям этих веществ. Если же структура материи неизвестна или от нее отвлекаются, то сохранение материи выражается как неуничтожимость некоторых существ. свойств материальных объектов. В процессах превращения сохраняются, именно существ. свойства. Однако существенность свойств определяется в свою очередь через их сохранение в исследуемых процессах. Здесь именно тот логич. круг, к-рый характерен для фундаментальных понятий науки и к-рый разрывается выходом в сферу филос. принципов. Ломоносову, как и Лавуазье, материя представляется в виде неизменных атомов. Т.к. атомы обладают постоянной массой и весом, то действие закона сохранения материи может выявляться в конкретном исследовании посредством взвешивания веществ до реакции и после реакции. К тому времени уже были известны наблюдения Рише, показавшие зависимость веса тела от места на земной поверхности. Поэтому взвешиванием, строго говоря, определялась величина массы тела, к-рая отождествлялась с количеством материи. Такая трактовка закона сохранения материи существовала до конца 19 в., хотя уже к этому времени закон сохранения и превращения энергии и успехи электромагнитной теории Максвелла подготовили основу для изменения формы этого закона. Новые представления о структуре материи, связанные с результатами теории относительности и квантовой физики, привели к формулировке положения, согласно к-рому во всех известных науке превращениях материальных объектов сохраняются их общие свойства и отношения. В совр. понимании материя представляет собой ряд структурных уровней, начинающийся с известных к наст. времени фундаментальных частиц, к-рые сами по себе лишь относительно устойчивы. Если относит. устойчивость их принять за абс. устойчивость, как это имело место в классич. атомизме, то принцип сохранения материи может принимать классич. форму, выступая, в частности, как закон сохранения массы. С т. зр. совр. атомизма, фундаментальные частицы материи взаимопревращаемы. Процессы взаимных превращений приводят к образованию новых частиц, относящихся к тому же классу фундаментальных частиц материи или к более сложным структурным формам, составленным из этих частиц. Сама связь этих частиц образует сложные структурные формы и представляет собой особый вид материи – поле, к-рое, в свою очередь, может быть квантовано. Факт порождения материальными частицами др. материальных частиц, др. словами, факт различия при тождестве, и дает основание для новой трактовки принципа сохранения материи и движения. Условием сохранения материи выступает теперь ее изменение, а изменение, в свою очередь, невозможно без сохранения общих свойств, присущих всем формам материи. Вся совокупность известных к наст. времени конкретных С. п. выражает общий принцип сохранения материи и движения. Конкретные формы С. п. имеют математич. выражение, что позволяет классифицировать их по математич. формам. Анализ этих форм показывает, что формулирование С. п. выступает как условие применения математики в данной теоретич. системе науки. Развитие физич. теории, в частности, совершается по мере того, как удается открыть новые сохраняющиеся величины и разработать или найти в развивающейся математике адекватный этим величинам математич. аппарат. Возможность такой роли математики объясняется тем, что любая развитая математич. теория содержит понятия, к-рые так или иначе выражают идею инвариантности. В нек-рых теориях эта идея выступает непосредственно. К ним относится теория групп, к-рая в последние годы находит все возрастающее признание и применение в физике и др. науках о природе. Принимая разнообразные формы, С. п. являются необходимыми основоположениями всякого науч. знания, хотя часто они явно не формулируются. Можно сказать, что знание становится научным, приобретает возможность развития в качестве теоретич. системы в той мере, в какой принимает конкретные формы идея сохранения. Эта идея обнаруживается уже в древней философии, в характерных для нее поисках извечных начал или корней всего существующего. Атомизм древних стал первым в истории познания природы конкретным воплощением идеи сохранения. Др. сторону этой идеи раскрыл Платон в учении о неизменяющихся гармонически организованных элементах, лежащих в фундаменте мира. Это учение позднее воплотилось в принцип симметрии, тесно связанный с совр. представлениями о С. п. Само содержание понятия симметрии можно рассматривать как специфич. единство сохранения и изменения, вытекающее из единства тождества и различия, внутреннего и внешнего в объектах природы. Симметрия имеет место там, где можно выявить в определ. отношении различие объекта от внешнего окружения и его внутр. тождество с самим собой. Она представляет собой гармонич. равновесие сохраняющегося и изменяющегося в любом процессе изменения, в любой форме движения. Динамич. процессам, к-рые исследует физика, соответствует абстрактная динамич. симметрия, сохраняющимися параметрами к-рой выступают, в частности, энергия, импульс, момент, заряды и т.п. Сообразно трем классам сохраняющихся объектов можно говорить о трех осн. типах симметрии: симметрии вещей, свойств, отношений. При переходе в процессе познания от одного уровня материи к другому нередко обнаруживаются новые сохраняющиеся элементы. В таких случаях познание в конечном счете приходит к выявлению нового типа симметрии. Поэтому можно сказать, что в познании действует своеобразный принцип сохранения симметрии: обнаружение нарушения одного типа симметрии компенсируется открытием др. типа симметрии. Поиски инвариантных величин становятся необходимым элементом науч. анализа не только в области физики, но и во всех др. областях науки, где решающее значение приобретает понятие структуры. С. п. выступают в этом случае как метод познания структуры. С этой т. зр., новейшие открытия молекулярной биологии представляют собой обнаружение глубоких структурных инвариантов живых систем, своеобразных, специфически биологических С. п. (напр., при изучении наследственности). С. п. находятся в тесной связи с классич. законами и категориями диалектики. Единство сохранения и изменения является весьма общим законом природы. Действие этого закона можно проследить, однако, и в др. сферах действительности, включая и область человеч. мышления. В частности, в развитии науч. познания в качестве формы этого закона можно рассматривать соответствия принцип. Всеобщность единства сохранения и изменения позволяет говорить о своеобразном законе диалектики, имеющем столь же общий характер, как и все ее др. законы. Этим же определяется и важная роль категории сохранения, к-рая должна включаться в общее учение о движении. Анализ категории движения и подробно развитые в сов. лит-ре классификации форм движения нельзя считать полными без анализа соответствующих форм сохранения. Процесс познания на любом уровне строится т.о., что выявляемые характеристики объекта приобретают все более инвариантный характер по отношению к изменяющимся условиям познания. Напр., познание движения как объективного процесса и в особенности познание движущегося объекта приводит к выявлению инвариантных характеристик самого движения и к вычленению объекта из непрестанно изменяющихся ситуаций. Такое вычленение и обеспечивается обнаружением разнообразных сохраняющихся параметров изменяющегося объекта. Если понятию сохранения придать категориальный характер, то можно утверждать, что и к познанию применимы своеобразные, широко понимаемые С. п. как существ. критерии его истинности. С этой т. зр. можно подойти к оценке нек-рых известных логич. и теоретико-познават. концепций и принципов. Напр., закон тождества в формальной логике при известных условиях можно рассматривать как своеобразную форму С. п., работающую в области формальной структуры самого мышления. Сам процесс становления мышления в индивидуальном развитии, равно как и историч. движение науч. познания, подчиняется своим особым "законам тождества", своеобразным С. п. в форме специфич. инвариантов развивающейся мысли. Именно такого рода инварианты обеспечивают объективную ориентацию человека в непрестанно изменяющемся мире и в конечном счете определяют объективную значимость развивающегося познания. Лит.: Планк М., Принцип сохранения энергии, пер. с нем., М.–Л., 1938; Вейль Г., Классич. группы, их инварианты и представления, пер. с англ., М., 1947; Кузнецов И. В., Принцип соответствия в совр. физике и его филос. значение, М.–Л., 1948; Законы сохранения в физике и причинная обусловленность явлений природы, в кн.: Проблема причинности в совр. физике, М., 1960; Меры движения и законы сохранения, в кн.: Филос. вопросы совр. учения о движении в природе [Л.], 1962; Кузнецов И. В., Взаимосвязь физич. теорий, "ВФ", 1963, No 6; Вигнер ?., Симметрия и законы сохранения, "УФН", 1964, т. 83, вып. 4; Веселовский В. Н., Филос. значение законов сохранения материи и движения, М., 1964; Менский М. Б., Сохранения законы, в кн.: Физический энциклопедии, словарь, т. 4, М., 1965; Овчинников ?. ?., Принципы сохранения, М., 1966; Готт В. С., ?еретурин А. Ф., Абсолютное и относительное в законе сохранения и превращения энергии, "ВФ", 1967, No 3. H. Овчинников. Москва.

Смотреть больше слов в «Философской Энциклопедии»

СОЦИАЛИЗАЦИЯ →← СОХРАНЕНИЕ ПРЕДИКАТА

Смотреть что такое СОХРАНЕНИЯ ПРИНЦИПЫ в других словарях:

СОХРАНЕНИЯ ПРИНЦИПЫ

СОХРАНЕ́НИЯ ПРИНЦИПЫ утверждения, выражающие идею сохранения вещей, свойств или отношений природы и выступающие в качестве принципов науч. теорий. К... смотреть

СОХРАНЕНИЯ ПРИНЦИПЫ

особый класс научных принципов, отображающих постоянство фундаментальных свойств или отношений природы. В структуре физических теорий С. п. формулируются как законы сохранения и как принципы инвариантности. В настоящее время известны: закон сохранения энергии, массы, импульса. момента импульса, спина, изотопического спина, четности, странности, лептонного заряда, барионного заряда и т. д. В специальной теории относительности формулируется принцип инвариантности законов природы по отношению к системам, движущимся друг относительно друга равномерно и прямолинейно. В физическую теорию входят фундаментальные постоянные: А — постоянная Планка в квантовой механике, с — постоянная скорости света в теории относительности. Постоянство этих величин можно рассматривать как особый тип С. п. Т. обр., типы С. п. многообразны. Это многообразие сопоставимо с многообразием форм движения материи, в соответствии с к-рыми возможна и классификация. С. п. По степени общности действия С. п. можно разделить на общие и частные. Закон сохранения энергии, напр., относится к классу общих С. п., а закон сохранения четности — к классу частных С. п. Можно различать С. п. и по характеру сохраняющихся величин (вещи, свойства или отношения), и по математическим формам. В исследовании сложных, в частности биологических, систем важное значение приобретает понятие структуры, и С. п. имеют здесь форму структурных принципов. В связи с этим большую роль играет соотношение С., п. со свойствами симметрии, т. е. с гармоническим ритмом или закономерным расположением частей в целом. Симметрия с этой т. зр. предстает как единство сохранения и изменения, связанное с тождеством и различием данных объектов. С. п. контролируют процессы взаимных превращений материальных объектов. Они являются глубокой основой закономерных, необходимых причинных связей природы. Будучи наиболее общими законами в той или иной научной теории, они имеют большое эвристическое значение. С. п. отражают собой одну из сторон диалектического противоречия — противоречия сохранения и изменения. ... смотреть

СОХРАНЕНИЯ ПРИНЦИПЫ

        СОХРАНЕНИЯ ПРИНЦИПЫ — особый класс научных принципов, отображающих постоянство фундаментальных свойств или отношений природы. В структуре физич... смотреть

T: 128